American Geophysical Union Fall Meeting, New Orleans, LA, Dec 13-17, 2021

Seasonal hydroclimate recorded in high resolution, intra-ring δ^{18} O profiles from longleaf pines growing in a coastal savanna of southwest Louisiana, USA

William E. Lukens¹, Robert T. Narmour², Brian A. Schubert²

¹ Department of Geology and Environmental Science, James Madison University ²School of Geosciences, University of Louisiana at Lafayette

Rainfall amount and intensity are increasing under anthropogenic climate change, but many instrument records span less than a century. The oxygen isotopic composition of tree-ring cellulose (δ^{18} O) reflects local source water, climate, and tree physiology. The patterns of δ^{18} O within tree-rings has the potential to extend pre-instrument climate records with subannual resolution, but the influences on intra-ring δ^{18} O profiles are unexplored in many settings. In this study, high-resolution δ^{18} O profiles were analyzed on three longleaf pine trees growing in a native savanna in southwestern Louisiana, United States. The time series covers a wide range of rainfall conditions from 2001-2008 C.E., including five tropical storm strikes within 150 km of the study site. The δ^{18} O values (n = 421) are well correlated within and between trees (r = 0.71-0.78). We used principal components analysis and k-means clustering to differentiate δ^{18} O profiles into two groupings: symmetrical δ^{18} O profiles versus asymmetrical profiles that have depressed latewood δ^{18} O values. The slope of latewood δ^{18} O profiles is best explained by the amount effect, namely that higher seasonal precipitation results in lower latewood δ^{18} O values. We hypothesize that poorly drained soils in the study area mediate the influence of any individual storm event: in dry years, ¹⁸O-depleted signals from convective storms are erased by subsequent evaporative enrichment of standing water, whereas in wet years, increased humidity and frequent re-supply of ¹⁸O-depleted water overrides evaporative enrichment effects, resulting in low δ^{18} O of latewood. These results suggest that δ^{18} O proxies for tropical storm occurrence need to account for soil conditions at the site of tree growth.