American Geophysical Union Fall Meeting, San Francisco, CA, December 11-15, 2023

The effect of CO₂ on carbon isotope discrimination in C₄ monocots (grasses) and dicots

Brian A. Schubert¹ and A. Hope Jahren²

¹School of Geosciences, University of Louisiana at Lafayette, Lafayette, LA 70504 ²Centre for Planetary Habitability, University of Oslo, N-0315, Oslo, Norway

The presence or prevalence of C₄ plants within paleoecosystems is widely invoked to gain insight into paleoclimate conditions, herbivore paleoecology, landscape evolution, and more. Stable carbon isotope analyses of fossilized terrestrial substrates, such as paleosols, are a preferred method for such studies, due to the conspicuously high carbon isotope value (δ^{13} C) of C_4 plant tissue, relative to C_3 plants growing in the same environment. Because C_4 photosynthesis features the enzyme PEP-carboxylase, which works to actively pre-concentrate CO_2 prior to fixation by RuBP, workers have assumed the $\delta^{13}C$ of C_4 plants to be independent of the CO_2 level of the atmosphere. We set out to test this assumption across a wide range of CO_2 (400-1400 ppm) in a diverse set of C_4 plants. Specifically, we included three C_4 dicot genera (Amaranthus, Atriplex and Gomphrena), extant weedy species commonly found in North America. To compliment these experiments, we included four genera of monocots (Eleusine, Dactyloctenium, Sorghum, Setaria), all grasses. We found strongly divergent trends between the two groups: all monocots showed no change in δ^{13} C value with increasing CO₂. All dicots, however, showed strong linear decreases ($R^2 = 0.97-0.99$) in $\delta^{13}C$ value with increasing CO₂ level. These results suggest that when quantifying C₃ versus C₄ abundances using δ^{13} C data, changes in CO₂ level must be considered when estimating endmember δ^{13} C values, particularly when significant dicot contribution is obvious, or cannot be ruled out.