American Geophysical Union Fall Meeting, Chicago, IL, December 12-16, 2022

Quantifying the influence of water stress on the use of plant isotopes to estimate paleo-CO2

Brian A. Schubert¹ and A. Hope Jahren²

¹School of Geosciences, University of Louisiana at Lafayette, Lafayette, LA 70504 ²Centre for Earth Evolution and Dynamics, University of Oslo, N-0315, Oslo, Norway

Our previous work demonstrated a hyperbolic relationship between CO₂ concentration and net carbon isotope discrimination (Δ^{13} C) in C₃ land plants. We ascribed the mechanism to photorespiration, a conserved trait through the history of photosynthesis. From the first, our goal was to use the Δ^{13} C value of fossilized plant material preserved as terrestrial organic matter (TOM) as a proxy for paleo-CO₂. The most stringent critique of this method was that it ignores the potential effect of water stress on Δ^{13} C, an effect that, if present, would lead to a systematic underestimate of CO₂. Here, we report new experimental data comparing the magnitude of Δ^{13} C response for plant tissue grown under the simultaneous modulation of water stress and CO₂. Within this work, we germinated a total of 164 *Arabidopsis thaliana* seeds within individual pots inside five controlled growth chambers at CO₂ ranging from 389 to 2175 ppmv, and three levels of water stress: field capacity (FC, $\theta_m = 1.50$ g g⁻¹ or 60%), permanent wilting point (PWP, $\theta_m =$ 0.44 g g⁻¹ or 30%), and a midpoint level that represented substantial, but not terminal, water stress ($\theta_m = 0.83$ g g⁻¹ or 45%).

We measured an increase in Δ^{13} C value with increasing CO₂ at each level of water stress. The response was indistinguishable comparing the plants grown at $\theta_m = 60\%$ and 45%, and only differed for plants growing at the minimum hydration required to prevent death. Yet, the same increase in Δ^{13} C value with increasing CO₂ occurred at all levels of water stress, including both PWP and FC, as well as at the midpoint, $\theta_m = 45\%$. Thus we expect that the general relationship between Δ^{13} C and CO₂ that we quantified previously holds true for all environmental conditions that support plant growth, and will present several applications and misapplications of using Δ^{13} C value to predict CO₂ across the Phanerozoic.