High-resolution \(pCO_2 \) reconstruction across the early Cenozoic greenhouse and late Cenozoic icehouse climates

Ying Cui1 and Brian A. Schubert2

1Department of Earth Sciences, Dartmouth College, Hanover, NH 03755
2School of Geosciences, University of Louisiana at Lafayette, Lafayette, LA 70504

Historical data and ice core records provide the best-constrained data on global temperatures and atmospheric carbon dioxide concentrations (\(pCO_2 \)), which can be used to calculate short-term estimates of climate sensitivity. These data, however, may not be representative of longer timescales and represent a period of Earth history when \(pCO_2 \) and global temperatures were relatively low; recent work suggests that climate sensitivity may change under different climate states and timescales. Here we present a new high-resolution \(pCO_2 \) reconstruction for the early (65 to 50 Ma) and late (30 to 0 Ma) Cenozoic using a proxy based on changes in carbon isotope fractionation in C3 land plants. This work uses widely available carbon isotope data from various terrestrial organic substrates to produce a nearly continuous record of \(pCO_2 \). This record identifies both large-scale trends (e.g., the early Cenozoic is characterized by higher \(pCO_2 \) than the late Cenozoic), as well as transient, highly elevated \(pCO_2 \) during the early Eocene hyperthermals. We discuss the uncertainties associated with this new \(pCO_2 \) reconstruction, which include the effects of precipitation, plant community shifts, and source effects on the \(\delta^{13}C \) record. Additionally, uncertainty associated with the correlation in time between \(\delta^{13}C \) estimates of atmospheric CO\textsubscript{2} and the terrestrial \(\delta^{13}C \) of organic matter is included in the error propagation. Comparison of the new \(pCO_2 \) record to existing global average temperature records based on the \(\delta^{18}O \) value of well-preserved marine foraminifera can yield new insight into Earth system climate sensitivity across a wide range of climate states and timescales.